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Abstract 

This paper explains the prediction algorithm used by the Landing Craft Air Cushion Vehicle 
(LCAC) selection system. Five variables from a psychomotor test battery were combined to form 
a composite score. This composite score was then compared to a threshold score. If a candidate 
for an LCAC crew position achieved a composite score higher than the threshold score, that 
candidate was predicted to pass Phase I of LCAC training. Likewise, if a candidate scored lower 
than the threshold score he was predicted to fail training. The threshold score was determined 
by Statistical Decision Theory as interpreted from the Bayesian approach. Examples are given 
showing how the threshold scores can change as a function of the prior probabilities of pass or 
fail and the values attached to making correct and incorrect predictions. 
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1    Introduction 

The Naval Aerospace Medical Research Laboratory (NAMRL) first began research into a selection 
system for the Landing Craft Air Cushion (LCAC) Vehicle in 1987 with funding from the Naval 
Sea Systems Command. At that time, the attrition rate during Phase I training for the LCAC 
operator position was approximately 40%. Since NAMRL had been involved in aviator selection, 
it was thought that some of the same tests might help to reduce these high LCAC attrition rates. 
Even though the NAMRL selection test battery had been devised for officers in the aviation 
community, the tasks involved in piloting the LCAC might exhibit enough similarity to use them 
for the enlisted group targeted as LCAC operators. 

Accordingly, the NAMRL selection test battery was modified to form an LCAC selection 
system, and research was begun to assess its efficacy in reducing attrition for the LCAC operator 
community. The selection system proved so successful that it was enlarged to encompass two 
other LCAC positions, the engineer and the navigator. The LCAC selection system is now 
routinely administered to about 100 candidates yearly for the operator and engineering positions 
at the Naval Aerospace and Operational Medical Institute. Modifications to the LCAC selection 
system to accommodate some unique requirements for the navigator position are currently being 
researched at NAMRL. The intent of this report is to document the prediction algorithm at the 
heart of the LCAC selection system. There are many other references [1-15] that describe the 
history of the research and the implementational details. 

The LCAC selection system contains an algorithm for predicting the success or failure of an 
individual candidate who might possibly undergo training for the position of operator or engineer. 
The actual implementation of the algorithm in the software code is quite simple. Five variables 
from a psychomotor test battery are weighted and then combined to form a composite score. 
This composite score is assumed to be a good indicator of the more complex psychomotor skills 
relevant to success during LCAC training. Each candidate's composite score on the test battery 
is then compared to a threshold score. If a candidate's composite score is greater than or equal 
to the threshold score, the candidate is predicted to pass training, while a composite score below 
the threshold results in a prediction of failure for the candidate. 

How were the variables and the associated weights that make up the composite score derived? 
Briefly, scores were constructed such that the distance between the mean score of those who 
eventually passed training and the mean score of those who eventually failed training was as 
far apart as possible. At the same time, the variance of the composite scores was kept to a 
minimum for each of these two groups. This goal was accomplished via the statistical technique 
of Discriminant Analysis. 

While the actual implementation of the algorithm in the software code is relatively straightfor- 
ward, the mathematical rationale for where to set the threshold that predicts the training outcome 
is a bit more complex. The development depends upon a branch of mathematics called statistical 
decision theory (SDT). SDT, in turn, hinges on a Bayesian treatment for making inferences when 
costs and prior probabilities can be specified. 

If the costs of the correct and incorrect decisions and prior probabilities for the outcomes can 



be specified then SDT will provide the optimal placement of the threshold based on this input. 
Since these subjective and economic data are generally not disclosed to researchers involved in 
selection it is left up to the developers of the LCAC selection system to interpret the desires of the 
LCAC community in making a determination of the optimal pass/fail threshold score. Arbitrarily 
choosing a threshold that is high will undoubtedly rule out the selection of a certain number of 
candidates that would otherwise be successful in training; however, if the costs associated with 
candidate failure during training are high, and outweigh the costs associated with eliminating 
some potentially successful candidates, then such a high pass/fail threshold might be desirable. 

Even a successful selection test battery and associated prediction algorithm like the LCAC 
selection system cannot predict with complete certainty whether a candidate will pass or fail 
training It should be understood that the LCAC selection system raises the probability for any 
candidate selected to successfully complete training. For example, before the selection system was 
implemented, the consequent random sampling of psychomotor skills might result in an overall 
probability of success equal to .50. With a selection system, by sampling some of the relevant 
psychomotor skills to successfully operate the LCAC, this probability might be raised to .80. This 
means that there will be less attrition during training, but does not mean that every candidate who 
passes the test battery will pass training. Any candidate chosen by the test battery has a higher 
probability of completing training than one chosen without the benefit of this information. 

Any selection test that is not perfectly correlated with training outcome (and this includes all 
selection tests) will exhibit some recommendations that will later turn out to be in error. The 
correctness of decisions in trainee selection is related to the degree to which the selection test taps 
into the skills needed to perform critical tasks. For example, perhaps docking the LCAC aboard 
the mothership is a skill that is not sampled by the selection test. A candidate for training then 
can perform adequately on the psychomotor test battery and yet fail the training where this skill is 
needed. There are also those additional failures during training that the selection test could never 
have predicted because they are due to extraneous factors such as morale, motivation, unique 
situational occurrences, family concerns, personal life style changes, etc. 

For all of these reasons, there will always be failures from the LCAC training program even 
after the selection test battery has given a stamp of approval. Raising the threshold can help reduce 
failures, but it is not a universal panacea. There comes a point where raising the threshold, even 
though it does provide you with a candidate with better psychomotor skills, cannot compensate 
for those other factors, mentioned above, that can cause failure. This is, of course, just another 
way of saying that the selection test battery cannot predict success or failure with a probability 

of 1. 
Another consideration to bear in mind in connection with the probabilistic nature of the LCAC 

selection system is that even though we talk about raising the probability of success in training 
from, say, .50 to .80, the actual numbers passing or failing during training over a finite sample 
size will vary from the expectation dictated by these probabilities. Over a finite sample size of 
candidates, say 100 for an easy number, 50 will be expected to pass and 50 will be expected to 
fail without the selection test. But it could happen through random fluctuations over these 100 
candidates that only 40 pass or perhaps 60 pass, while the underlying probability has not deviated 
from .5. Likewise, if the underlying probability has been raised through the use of the selection 



system to .8, we would expect 80 to pass, but would not be surprised if only 72 passed or 86 
passed. In both cases, these numbers are compatible with a heightened probability of success of 
.8 and reflect only the vagaries of the sample size. However, an extra benefit of the increased 
probability that use of the selection system affords is that, although sampling variability still 
exists, it is smaller at higher probabilities than at .5. 

2   The Derivation of the Composite Scores 

Five variables were chosen from the psychomotor test battery through discriminant analysis. 
These five variables were reduced to four by combining the last two variables. Further research 
may indicate other variables that could be included in a revised prediction algorithm, but at the 
present time these variables seem to perform well. The composite score (CS) was derived by 
multiplying these four variables by weights suggested by the discriminant analysis and adding a 
constant value. The composite scores used in the numerical examples for a candidate who was 
a predicted PASS and for the candidate who was a predicted FAIL are derived in the two tables 
shown below. The actual formula for the composite score can be expressed as follows, 

CS  =  Y^wA + C 
i=l 

=   (-1)5! + (-4)S2 + (-1)53 + (+1)54 + 27 

=   27 + 54-5! -4S2-S3 

As will be explained in the next section, the threshold composite score was calculated as +.14. If 
a candidate's performance on the test battery as reflected by the composite score is above +.14, 
the candidate is a predicted PASS. If a candidate's performance on the test battery is below +.14, 
the candidate is a predicted FAIL. The table below shows a candidate who scored fairly well on 
the test battery. Since the composite score of +2.00 is above +0.14, this candidate is a predicted 
PASS. 

The variables, a typical value for each variable, their associated weights, and the resulting 
composite score are presented in Table 1 below. 

Variable Name Value Weight Multiplication 

Stick and DLT Si 4.00 -1 -4.00 
Stick and Rudder s2 4.50 -4 -18.00 
Stick, Rudder, and Throttle Ss 4.75 -1 -4.75 
Horizontal Tracking and RT s4 1.75 +1 1.75 
Constant 27.00 +1 27.00 

Composite Score +2.00 



The tracking error scores shown in the first three rows of this table represent a logarithmic 
transformation of the actual raw pixel error in order to promote a more normal distribution for this 
kind of score. The fourth variable is itself a composite variable consisting of a derived measure 
of tracking while performing a digit cancellation task at the same time. An LCAC candidate 
with this kind of composite score would have a calculated posterior probability for PASS greater 
than 50 and therefore would have been a predicted PASS using the prediction algorithm. This 
statement is explained in subsequent sections dealing with the Bayesian nature of the prediction 
algorithm. 

Table 2 shows a candidate who did not do as well on the test battery. Notice that Su S2, and 
S3 are error scores so that a higher score means worse performance. Lower scores on variable 
£4 are associated with worse performance so that this subject also did not perform as well as 
the previous subject on Horizontal Tracking and RT. This subject achieved a composite score of 
-1.50 and is, therefore, a predicted FAIL since this composite score is below the threshold score. 

Variable Name Value Weight Multiplication 

Stick and DLT Si 4.50 -1 -4.50 

Stick and Rudder s2 5.00 -4 -20.00 

Stick, Rudder, and Throttle S3 4.90 -1 -4.90 

Horizontal Tracking and RT s4 .90 +1 .90 

Constant 27.00 +1 27.00 

Composite Score -1.50 

3   Bayes's Formula and Numerical Examples 

The prediction algorithm for deciding whether to recommend a candidate for entrance into the 
LCAC training program is based on the composite score from the psychomotor test battery as 
just explained. However, this is just part of the story behind the prediction algorithm. The use of 
statistical decision theory, together with the assignment of relative costs to a decision-true state 
matrix, lies at the core of statistical decision theory as it is used here. This Bayesian approach 
seeks to update a prior state of knowledge about the probability of success in LCAC training 
through new information concerning skills thought to be relevant for training success. 

An LCAC candidate is classified as a predicted PASS or FAIL by computing the posterior 
probability of belonging to the PASS or FAIL group, and then assigning the candidate to the group 
with the largest posterior probability. The extra information used to update the prior probabilities 
is the composite score derived from the psychomotor test battery. The general form of Bayes's 
Formula used to calculate the posterior probability of group membership is 

P(G | m -     WM X PW (1) 

where P(Gi\D) is the posterior probability for Group i after receipt of some test data, P{D\Gi 



is the likelihood of the test data given Group i, and P(Gi) is the prior probability of Group i. 

In particular, for the two group case, which is the focus of our attention in the LCAC study, 
the formula reduces explicitly to 

P(PASS|D)   : 
P(£>|PASS) x P(PASS) 

P(FAIL|L>) 

The likelihood terms, 

[P(£>|PASS) x P(PASS)] + [P(D|FAIL) x P(FAIL)] 

1 - P(PASS\D) 

(2) 

(3) 

P(D|PASS) and P(£|FAIL) 

are Gaussian, 

P(D|PASS)   = 

P(£|FAIL)   = 

_]/2 fx-ßPASs\ 
VPASS    ) 

27T<7 PASS 

"^fe^ 
2lT(TFAIL 

(4) 

(5) 

where x is the candidate's composite score, UPASS is the group mean of the composite scores 
for the PASS group, UFAIL is the group mean of the composite scores for the FAIL group, and 
&PASS and VFAIL are the standard deviations of the computed composite scores. 

The discriminant analysis (DA) program from the statistical software package SPSSPC+ was 
used to to derive an appropriate composite score. The DA program calculated fipAss = .77239 
and [IF AIL = .14135. a PASS and a FAIL are both equal to 1 by definition. Equation (2) can then 
be written as, 

P(PASS|D)   = h 
/1+/2 

where /1   =   exp{-l/2 (x - fiPAss)2} x P(PASS) 

and/2   =   exp{-l/2 (a; - IXFAIL)
2
} X P(FAIL) 

(6) 

(7) 

(8) 

A numerical example using this formula for the calculation of the posterior probability of 
belonging to the PASS or FAIL group follows. Assume that a candidate takes the selection test 
battery and does reasonably well on the test. His composite score turns out to be equal to 2.00 
just as in the example of the previous section. A summary of the variables needed to solve 
Equations (6)—(8) is presented in Table 3. The reason for these particular values of the prior 
probabilities will be explained later. 



The composite score for the LCAC candidate 

Group mean of composite scores for PASS 

Group mean of composite scores for FAIL 

Prior probability of PASS 

Prior probability of FAIL 

x = 2.00 

VPASS = -77239 

PFAIL = -14135 

P(PASS) = .53 

P(FAIL) = .47 

fx   =   exp{-l/2 (2.00 - .77239)2} x .53 

=   .4707 x.53 

/2   =   exp{-l/2 (2.00 - .14135)2} x .47 

=   .1778 x.47 

.4707 x .53 
P(PASS|JD = 2.00)   =   {mi x 53) + {m8 x A7) 

.2495 
.2495 + .0835 

=   .7491 

Therefore, the posterior probability of a PASS in LCAC training is .7491 given that a candidate 
achieved a composite score of 2.00. It follows that the posterior probability of a FAIL is .2509. 
The probability of belonging to the PASS group, given the data from the test battery, is about 
75%. This candidate will be classified by the system as a PASS. 

Another example of this formula is presented below; this time of an LCAC candidate with 
poorer performance on the test battery. Whereas in the first example the LCAC candidate scored 
a 2.00 and was classified as a PASS, in this example the candidate scores a -1.50 as a composite 
score. What is this candidate's predicted training outcome based on these data? As in the 
previous case, the relevant data are presented in Table 4. 

The composite score for the LCAC candidate 

Group mean of composite scores for PASS 

Group mean of composite scores for FAIL 

Prior probability of PASS 

Prior probability of FAIL 

x = -1.50 

UPASS = -77239 

ßFAIL = -14135 

P(PASS) = .53 

P(FATL) = .47 



/i   =   exp{-l/2 (-1.50 - .77239)2} x .53 

=   .0756 x.53 

f2   =   exp{-l/2 (-1.50 - .14135)2} x .47 

=   .2600 x .47 

.0756 x .53 
P(PASS|Z> = -1.50)   =   (.0756x.53) + (,2600x.47) 

.0401 
.0401 +.1222 

=   .2470 

Therefore the posterior probability of a PASS in LCAC training, given that a candidate achieved 
a composite score of -1.50, is .2470. Again, it follows that the posterior probability of a FAIL 
for such a score is .7530. The posterior probability of belonging to the FAIL group is higher than 
the posterior probability of belonging to the PASS group, so this candidate is predicted to FAIL. 

We do not have to actually carry out these calculations to make a prediction for a candidate. 
We simply have to find out beforehand the threshold score, i.e., the score such that anything above 
this score is a predicted PASS and anything below it is a predicted FAIL. Then the algorithm 
can make a prediction by simply comparing a candidate's composite score with the threshold 
score. The threshold score is that composite score where a predicted PASS and a predicted FAIL, 
based on the data from the test battery, are both equal to .50. With the prior probabilities set 
at P(PASS) = .53 and P(FAIL) = .47 in the above numerical examples, this threshold score is 
.14. This is observed to be the mean of the composite scores for the FAIL group. As a matter of 
fact, the prior probabilities were purposely manipulated so that the threshold score would be at 
this precise location. 

Different prior probabilities would dictate a different threshold score where 

P(PASS|Data) = P(FAIL|Data) = .50 

In the Bayesian approach to statistical decision theory, the threshold score is determined by a 
multiplicative relationship between the costs associated with the available decisions and the prior 
probability. However, the DA program was coded in such a way that it was possible to enter 
only the prior probability, so it has to assume the entire burden for both of these factors. When 
a prior probability is specified, for example, P(PASS) = .53 and P(FAIL) = .47, this reflects 
both the historical frequency of passing and failing as well as the matrix of costs associated with 
the decisions. 

After taking into consideration both the historical frequency of passing and failing and the 
costs associated with the predictions and the actual training outcomes, the threshold score was 



set at the mean of the FAIL group. This decision, in turn, mandated the particular values for 
the prior probability parameters of the DA program that were used in the examples. Different 
historical frequencies and a different cost matrix would result in different numerical settings for 
these parameters. These different settings might reflect either a change in attrition rates or a 
desire to restrict or promote the flow of students into the training pipeline. 

4   The Evaluation of Correct and Incorrect Decisions 

In statistical decision theory, it is not enough to just provide the posterior probabilities for a 
candidate to pass or fail training. There must be some means for taking action based on such 
probabilities. Within the Bayesian framework, an incentive for taking action is cast quantitatively 
by assigning values to the matrix of all possible decisions with all possible true states of the world. 

The construction of such a matrix is quite feasible in our problem because there are only two 
alternatives to be paired off with two possible decisions. The matrix will then be a 2 x 2 matrix 
with four cells. The two possible alternatives represent the true state of nature, i.e., whether the 
candidate actually passes or fails training. The two possible decisions are to predict a PASS or 
to predict a FAIL. 

To complete the decision process, it is necessary to fill in these four cells with numbers 
that represent the relative value we ascribe to the two correct predictions and the two incorrect 
predictions. The convention employed in this report is to use positive numbers for the correct 
decisions and zero for the incorrect decisions. See Fig. 1 for such a 2 x 2 matrix with values 
specified generically as V\ through V4. 

PREDICTION 

TRUE 

Pass 

Fail 

Pass      Fall 

Correct Incorrect 

V2 
Incorrect 

V3 

Correct 

V4 

Figure 1: The value matrix for the LCAC prediction algorithm. There are only two possible true states of 
the world and only two possible decisions. The two correct and the two incorrect decisions are labelled. 

The formula for reaching a decision about any individual candidate is now derived. In the 
literature, this is sometimes called "setting a response threshold." The main concept from statistics 



that is used in the following derivation is the definition of expectation, or more informally, the 
average. For a discrete variable, the expectation is defined as, 

E{X) = YjPiXi (9) 
»=i 

where the pi are probabilities for each Xi, and the Xi are the values of the variable we are 
interested in. In our application, the pi are posterior probabilities of passing or failing based 
upon data, and the Xi are the values assigned to the 2 x 2 matrix that reflect our evaluation of 
the predictions and true outcomes. 

The goal is to find the expected value of a PASS and compare it to the expected value of a 
FAIL. If the expected value of a PASS is greater than the expected value of a FAIL, then this 
provides the justification for acting and making a prediction of a PASS for a candidate. We only 
have to average over two Xi and two pi to calculate the expected value of a PASS or the expected 
value of a FAIL. This is a simple application of the general rule of Bayesian decision making 
that calls for the minimization of the expectation of the loss function with respect to the posterior 
probability (Smith [16]). 

4.1   Mathematical Derivation of Threshold Score 

This derivation follows closely the one given by Coombs, Dawes and Tversky [17]. Let 

Pi   =   P(Passpata) 

p2   =   P(Fail|Data) 

£V(Pass)   =   (Vi x pi) + (V3 x p2) 

EV(Fm\)   =   (V2xPl) + (V4xp2) 

If we let the expected value of a PASS be greater than the expected value of a FAIL in order to reach a 
decision about predicting a pass then, 

£V(Pass) > J5V(Fail) 

(Vi x Pi) + {Vz x pi) > (V2 x Pl) + (V4 x pa) 

(Vi xpi)-(F2xpi) > (V4 x p2) - (V3 x p2) 

Pi(Vi-V2) > p2(VA-V3) 

Pi    >    Vj-Vz 

p2    ~    Vx - V2 

P(Pass]Data) V± - Vz 

P(Fail|Data)    ~   V1-V2 

9 



Since the left-hand side of the final equation in the above derivation is the ratio of posterior probabilities, 
we plug in the likelihood times prior probability relationship from Bayes's Formula to find, 

■P(PasslData)     P(DatalPass) x P(Pass) 
P(Fail|Data) " P(Data|Fail) x P(Fail) 

The denominator, P(Data), cancels out in forming the ratio. Substituting this relationship between the 
likelihood and the prior probability in the derivation of the expected value gives us, 

P(Data|Pass) x P(Pass) ^ V4 -Vz 
P(Data|Fail) x P(Fail) ~ Vl-V2 

At this point, we want to isolate the likelihood ratio on the left side of this inequality so the ratio of prior 

probabilities is moved to the right side resulting in, 

P(DatalPass)      P(FajQ v Y±z3. 
P(Data|Fail) ~ P(Pass)     Vi - V2 

Notice that in transferring the ratio of prior probabilities from the left-hand side of the equation to the 
right-hand side, the ratio is inverted. These expressions on both sides of the equation have traditionally 
been labelled in the following manner: The expression on the left-hand side, the likelihood ratio, is given 

the notation, 

ru\ = p(DatalPass) (10) 
M ' ~ P(Data|Fail) 

while the expression on the right-hand side, consisting of the prior probabilities and the evaluation of the 
correct and incorrect decisions, is given the notation of ß, 

P(Fail)     Vt-Vz (11) 
P ~ P(Pass)     V1 - V2 

If C{x) > ß Ihen EV{?ass) > EV(Fail) (12) 

So in this condensed notation, the decision process is easily written down as summarized in Table 5. 

Predict PASS 

Predict FAIL 

Data from test battery 

Threshold score 

10 



4.2   Numerical examples of setting the threshold score 

Equation (12) shows that the score that divides the predicted PASS from the predicted FAIL is called the 
threshold score. The threshold score, ß, is seen from Equation (11) to be a function of two components, 
1) the prior probabilities and 2) the values given to the correct and incorrect decisions. The first example 
illustrates the threshold calculation when the prior probabilities are equal and the values given to the correct 
and incorrect decisions are also equal. If the prior probabilities for only two possibilities are to be equal, 
they must equal 1/2. The values associated with the correct decisions are Vx and V4. They are given 
values of 1. The values associated with the incorrect decisions are V2 and V3. They are given values of 0. 

P(Fail)     -    1/2 

P(Pass)     =    1/2 

Vi =1 

V2 =0 

V3 =0 

VA =1 

=     P(Fail)      V4-V3 
P P(Pass)     Vi - V2 

•1     1~° 
"   ^xi-o 

=    1 

The threshold score, or cut-off score, is therefore set at 1. So whenever C(x) > 1, the student is predicted 
to pass, and whenever C(x) < 1, the student is predicted to fail. This placement of the threshold score 
results from making rational decisions about average cost with probabilities of cost determined by the 
posterior probabilities. 

Figure 2 shows that the threshold score is located exactly where the distribution of test scores for the 
PASS and FAIL groups intersect. Of course, this intersection point is where, 

P(Data|Pass) = P(Data|Fail) 

or equivalently where, 

C(x)   = 
F(Data|Pass) 

P(Data|Fail) 

=   1 

Therefore, any score to the right of this threshold score is predicted to pass, and any score to the left is 

11 



Pass 

Predicted Fail Predicted Pass Score 

Figure 2: The threshold score is located where the likelihood ratio is equal to 1. 

predicted to fail. 

In this next example, we change one of the two components that make up ß to observe what effect this 
has on shifting the threshold score. We choose to manipulate the prior probability by increasing the prior 
probability of a FAIL from its previous setting at 1/2, but maintain the same value of the costs associated 
with the decisions. 

P(Fail) .80 

P(Pass)     =     .20 

Vi   =1 

V2   =0 

v4 

= 0 

= 1 

ß  = 
■P(Fail)     V4-V3 
P(Pass) X Vi - V2 

.8     1-0 

.2Xl-0 

12 



In this case, the threshold score is moved along the axis to the right. It must move to that point where the 
ratio of the densities, 

P(Data|Pass) 
P(Data|Fail) ~ 

This movement of the threshold score when the prior probability is changed is shown schematically in 
Fig. 3. Because of the higher prior probability of a FAIL, irrespective of what the test data show, a student 
must score higher to move into the region where a PASS can be predicted. 

ft A 
Fail Pass 

U.4 - 
A 

/ \ 
0.35- 

0.3- 
/ 
f 

\ 

/ \ 
/ \ 

■u  0.25 - if \ 
o 
o /                                               *' \ 
£    0.2- 
» /                                               ? s 

JC /                                               / \ 
^  0.15- L(x)=4     \ 

0.1 - 
/                      / \ 

0.05- 
/                      / 

■   y           y 
\v                                   V 

0- *~^~-i ■} *■    ""T    "  I 1 1  ■i 1— I—| 1 -r     i 1 1—^ 
in 

o «- N « 

Predicted Fail Predicted Pass Score 

Figure 3: The threshold score has moved to the right because the prior probabilities have changed to 
favor a prediction of fail. 

If the situation were reversed so that the prior probability of a PASS were .80, then the threshold 
would move in the opposite direction to where £(x) = 1/4. Now the threshold score is lower, reflecting 
the symmetry of the movement in response to changes in the prior probability. If there is knowledge, 
independent of the score on the test battery, that a student will more likely pass than fail, this knowledge 
is captured in the prior probability. These last two examples illustrate that this knowledge has affected the 
threshold score placement in a logical fashion. 

Having manipulated the first component, the ratio of prior probabilities, in the equation for setting the 
threshold score, we now observe what happens when the second component, the values associated with 
the decisions, are changed. In this example, the prior probabilities revert back to 1/2 for each group, but 
now it is more important to make a correct decision about a predicted PASS than about a predicted FAIL. 
To illustrate this numerically let, 

P(Fail) .50 

P(Pass)    =    .50 

13 



Vi   =5 

V2   =0 

V3     =0 

Vi = 1 

ß = 
P(Fail) 
P(Pass) 

xF4" 
Vi- 

-V3 

-v2 

= .5 1- 
.5*5- 

0 
0 

=     .20 

/? moves to the left along the score axis as the value of a correct decision about a PASS increases in 
relative value to a correct decision about a FAIL. Figure 4 shows this movement of the threshold score for 
a change in the relative evaluation of decisions. If it is important to capture in the prediction most of the 
students who could pass without worrying as much about those predicted to PASS who eventually FAIL, 
then this movement of the threshold score makes sense. The symmetrical situation of having a costly 
environment for failures would cause the threshold score to move to the right and make it more difficult 
for a student to score above the cut-off score. This type of placement for the threshold score, of course, 
would appear in higher values for V4 relative to Vi. 

Pass 

Predicted Fail Predicted Pass Score 

Figure 4: The threshold score moves to the left with a change in the evaluation of a correct predicted 
pass relative to the other decisions. 
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The numerical examples in this section have shown the threshold score is sensitive to both the prior 
knowledge about success and failure and to the relative values that are attached to the predictions for 
success or failure. The threshold score moves in a direction justified by Bayes's Formula when either one 
or both of these components are changed. 

5   Decision Theory Implications for LCAC 

All the ingredients involved in the SDT treatment of the LCAC prediction algorithm have now 
been presented. As a summary, the calculation and figures for the actual LCAC situation are 
given in this section. Figure 5 shows the theoretical normal curve of the composite score data 
for the FAIL group with \IFAIL = .14135 and aFAiL = 1-00 and the corresponding normal curve 
for the PASS group with /J,PASS = .77239 and aPASS = 1.00. 

Fail    Pass 

^Pass = . 77239 

°p«-l-M 

*3- 

Composite Score 

Figure 5: The theoretical normal curves for the composite scores of those LCAC candidates who passed 
training and those who did not. 

The probability density function (the y-axis) of each of these curves goes into the calculation 
of the likelihood ratio, C(x). The likelihood ratio at the threshold score is equal to ß. From the 
definition of £(x), 

_ P(Data = .14135|Pass) 
^ ~ P(Data = . 14135|Fail) 

The threshold score is located at the mean of the FAIL distribution. From a table of the normal 
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distribution, we can find that 

P(Data = .14135|Fail) = .3989 

To determine P(Data = .14135|Pass), we observe that a score of .14135 is -.631a from the 
mean of the PASS distribution. The normal curve has a probability density of .3270 at this 
z-score. Therefore, 

r< \ -3270 
L{X)   =   1989 

=   .8198 

The actual historical frequency of the attrition rate before the selection system was implemented 
was about 40%. Therefore, P(FAIL) = .40 and P(PASS) = .60, and we can then determine what 
the costs of the decision must be for the threshold score set at the mean of the FAIL distribution. 
Establishing a scale by setting the value of the two incorrect decisions V3 and V2 at 0 and the 
value of the correct decision Vi at 1, V4 is found by 

P(Fail)      V4-V3 
P        P(Pass) X Vi - V2 

.40     V4 - V3 x 

.60     K - V2 

ß   =   .8198 

.8198   =   .6667a; 

x   = =   1.2296 

x   - 
V4-V-3 

Vl-V2 

v4- -vz 1.23 - 0 
VI- -v2 1-0 

v4 = =   1.23 

By valuing a correctly predicted FAIL slightly more than a correctly predicted PASS, we move 
the threshold to the right. Recall the discussion of the effects of the prior probabilities and the 
decision-true state matrix on the direction of movement in the threshold score. This is also the 
explanation promised in the previous section for why the ratio 

P(Fail) 
P(Pass) 

was given the particular values in the numerical exercise. 
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As mentioned before, V4 was arbitrarily manipulated to bring the threshold score to occur 
at the mean of the P(Data|FAIL) distribution. In an ideal world the prior probabilities and the 
decision-true state matrix would be known. These known values would then determine ß, and 
the threshold score could be set. In the present scenario, this sequence of actions was reversed 
by pinning the threshold score at a precise location and then calculating what this implied for 
the value of the correct prediction of FAIL (V4). 

As always, the threshold score could be changed by different knowledge about either the 
prior probabilities of a PASS or FAIL, or by a different set of values for the correct and incorrect 
decisions. For example, if a correct prediction about a FAIL was valued even more highly than 
in the current example (VA > 1.23), then the threshold score would move to the right. It would 
then be harder for a candidate to pass the selection battery and there would be more predicted 
FAILS and fewer predicted PASSES. The down side of moving the threshold in this manner is 
that there would also be more incorrect decisions when predicting fail for candidates who would 
have passed. But this trade-off is implicitly accounted for within the factors making up ß. The 
decisions ensuing from a particular placement of the threshold are, by definition, the optimal 
decisions given the prior probabilities and decision-true state matrix. 
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